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Abstract: Epinephrine autoinjectors (EAIs) are used for the treatment of severe allergic reactions in a
community setting; however, their utility is limited by low prescription fulfillment rates, failure to
carry, and failure to use due to fear of needles. Given that delayed administration of epinephrine
is associated with increased morbidity/mortality, there has been a growing interest in developing
needle-free, easy-to-use delivery devices. neffy (epinephrine nasal spray) consists of three Food and
Drug Administration (FDA)-approved components: epinephrine, Intravail A3 (absorption enhancer),
and a Unit Dose Spray (UDS). neffy’s development pathway was established in conjunction with the
FDA and the European Medicines Agency and included multiple clinical trials to evaluate pharma-
cokinetic and pharmacodynamic responses under a variety of conditions, such as self-administration
and allergic and infectious rhinitis, as well as an animal anaphylaxis model of severe hypotension,
where neffy demonstrated a pharmacokinetic profile that is within the range of approved injection
products and a pharmacodynamic response that is as good or better than injections. The increased
pulse rate (PR) and blood pressure (BP) observed even one minute following the administration
of neffy confirm the activation of α and β adrenergic receptors, which are the key components of
epinephrine’s mechanism of action. The results suggest that neffy will provide a safe and effective
needle-free option for the treatment of severe allergic reactions, including anaphylaxis.

Keywords: epinephrine; anaphylaxis; severe allergy; food allergy; nasal spray; intranasal epinephrine;
out of hospital use; pharmacokinetics; pharmacodynamics

1. Introduction

There is a growing interest in using intranasal (IN) administration to administer a
variety of therapeutics, particularly for out-of-hospital use. In addition to being much less
invasive, IN administration offers multiple advantages over other routes of administration,
including ease of use, rapid absorption, and avoidance of pain typically associated with in-
travenous (IV) or intramuscular (IM) injection. Needle-free delivery options are particularly
beneficial for children, who are more likely to be “needle-phobic”. A range of medications,
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including midazolam, diazepam, fentanyl, naloxone, ketamine, and dexmedetomidine,
among others, are routinely administered intranasally for a variety of indications [1–9].

The vast majority of severe Type I allergic reactions occur in out-of-hospital settings,
and the immediate administration of epinephrine is the only universally recommended first-
line treatment [10–12]. Antihistamine and corticosteroid agents are considered second-line
treatment for anaphylaxis, given their slow onset of action and inability to stabilize or pre-
vent mast cell degranulation or to target additional mediators of anaphylaxis, which is the
essential physiologic effects of epinephrine [10]. Although epinephrine autoinjectors (EAIs)
are the most commonly prescribed products for community-based epinephrine therapy,
fewer than half of patients at risk for severe allergic reactions (including anaphylaxis) actu-
ally carry the products with them on a regular basis, and those that do often delay use dur-
ing a severe Type I allergic reaction [13,14]. Failed or delayed treatment is associated with
significant increases in the risks of biphasic reactions, hospitalization, and death [14–19].
The primary reason cited for failed/delayed treatment is needle-phobia [13,14,20].

Low utilization rates, particularly in light of the serious adverse outcomes associated
with failed/delayed treatment, represent a significant unmet medical need for patients
at risk for severe allergic reactions, including anaphylaxis. To address these needs, ARS
Pharmaceuticals, Inc. (ARS) is developing an epinephrine nasal spray, neffy, which is
currently under review by the United States (US) Food and Drug Administration (FDA)
and the European Medicines Agency (EMA). This report provides an introduction to neffy,
including its development strategy and a review of published clinical data.

2. neffy Product Information

neffy (epinephrine nasal spray) is a combination of three FDA-approved components,
including (1) epinephrine, the active ingredient; (2) Intravail (dodecylmaltoside [DDM]),
a proprietary absorption-enhancing agent called to improve the bioavailability of IN-
administered drugs; and (3) a Unit Dose Spray (UDS) designed to produce a spray pattern
and droplet size that maximizes delivery to the turbinate (Figure 1).
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2.1. Epinephrine

Epinephrine has been used for allergic reactions for more than 100 years and is the
only universally recommended first-line therapy for Type I allergic reactions. The use of
epinephrine for the treatment of anaphylaxis was first reported in the 1960s. It is agreed
internationally that epinephrine is the most effective treatment for anaphylaxis based on
clinical guidelines based on vast experience, case reports, and limited clinical trials [21–28].

Epinephrine’s mechanism of action (MOA) for the treatment of Type I allergic reactions
(including anaphylaxis) is generally well understood, where the reverse of the pathological
response caused by exposure to an antigen and a stabilized mast cell to stop allergic
reactions from proceeding are based on the direct systemic agonism of α- and β-adrenergic
receptors [29].

Epinephrine is a nonselective agonist at the α- and β-adrenergic receptors, which
are all G-protein-coupled receptors. Epinephrine prevents further degranulation and
release of allergic mediators within minutes by counteracting nearly every end-organ
action of immune mediators of anaphylaxis directly and stabilizing mast cells [30]. The
main therapeutic effect of epinephrine arises from its direct agonism of β2-adrenergic
receptors, resulting in the activation of adenylyl cyclase and increased intracellular cyclic
AMP production [31]. While anaphylaxis leads to the loss of intravascular fluid volume and
hypotension, α-adrenergic receptors reduce vasodilation and increase vascular permeability.
β-adrenergic receptors relax bronchial smooth muscle and help alleviate bronchospasm,
wheezing, and dyspnea that may occur during anaphylaxis. Heart rate and contractility
increase via β-adrenergic receptors to maintain the blood pressure (BP). Having the ability
to produce relaxation effects on the smooth muscle of the stomach, intestine, uterus,
and urinary bladder, epinephrine improves symptoms such as pruritus, urticaria, and
angioedema and may relieve gastrointestinal and genitourinary symptoms associated with
anaphylaxis [32].

Anaphylaxis most often occurs in response to food, insect stings, and drugs but
can also be exercise-induced or idiopathic. Because anaphylaxis can occur outside the
home, patients should be counseled on allergen avoidance and the importance of having
epinephrine available [12]. Effective symptom resolution, in part, depends on the immedi-
ate administration of epinephrine by a patient or caregiver [29]. At the same time, the risk
of overdose and thus severe cardiac adverse effects, while possible with any injection route
of administration [33], is lower with IM administration than with IV administration.

The FDA has approved several IM and subcutaneous epinephrine injection and EAI
products, including EpiPen® (Mylan Specialty L.P., Morgantown, WV, USA), Twinject®

(Amedra Pharmaceuticals LLC, Horsham, PA, USA), Adrenaclick® (Lineage Therapeutics
Inc., Horsham, PA, USA), Auvi-Q® (Kaleo, Inc., Richmond, VA, USA), and SymjepiTM

(Adamis Pharmaceuticals Corporation, San Diego, CA, USA), as well as generic EAIs [34].
With the exception of one pharmacokinetic study conducted for Auvi-Q [35], there were
no clinical trials or pharmacokinetic studies conducted to support the approval of these
products. Instead, their approval was based on the assumption that there were no sig-
nificant differences between these injection products and the reference listed drug (IM
injection with needle and syringe). However, more recent studies have established notable
pharmacokinetic differences among the different autoinjector products and manual IM
injection with needle and syringe [36–38].

It is important to note, however, that these pharmacokinetic differences do not appear
to translate into differences in clinical efficacy. All approved injection products are used
interchangeably, with the same guidance (dose immediately upon the development of
clinical symptoms, with a second dose 5 to 15 min later if symptoms do not improve).

2.2. Intravail

Intravail, also referred to as DDM, is designated as Generally Recognized As Safe
(GRAS) for food applications and is used to enhance the absorption of drugs such as
epinephrine. It has been used in several FDA-approved drugs, including Tosymra® (Dr.
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Reddy’s Laboratories Limited, Princeton, NJ, USA), Valtoco® (Neurelis, Inc., San Diego,
CA, USA), and Opvee® (Opiant Pharmaceuticals, Santa Monica, CA, USA) [39]. Intravail is
an alkylsaccharide that alters mucosal viscosity and membrane fluidity to loosen cell–cell
junctions. It induces rapid and reversible decreases in transepithelial/transendothelial
electrical resistance values, resulting in changes to the tight junctions to facilitate absorp-
tion [40,41]. Alkylsaccharide absorption enhancers are soluble in both water and oil and do
not cause irritation or damage to the mucosal membrane [6].

The use of an absorption enhancer like Intravail allows the dose of epinephrine
to remain as low as possible while maintaining efficacy and allows for a lower dose
relative to other IN formulations without a comparable absorption enhancer [42–45]. There
may be some concerns that epinephrine’s vasoconstriction effect may negatively affect
its absorption, but such an effect has not been observed with neffy with Intravail. The
mechanism may be discussed further in the future, but at least epinephrin is not just a
vasoconstrictor but also a vasodilator. Although epinephrine is considered the only safe and
effective first-line treatment of anaphylaxis [46], there have been reports of safety issues due
to overdosing, both following manual IM administration and EAI administration [29,47,48].
For IN products, it has been reported that epinephrine absorption during an allergic
reaction may be increased due to changes in vascular permeability [49,50]. A high dose
of epinephrine in the presence of increased permeability in the nasal mucosa, due to an
allergic reaction or population variability, could potentially result in excessive absorption
and increase the risk of overdose [51]. The inclusion of Intravail in the neffy formulation
allows for the optimization of efficacy while minimizing the risk of overdose by capping
the dose.

Use of the lowest possible epinephrine dose, or minimum effective dose, also reduces
the risk of dose-limiting toxicities. These doses minimize the risk of other adverse reactions,
including gastrointestinal side effects such as abdominal pain, nausea, and vomiting, which
could complicate the diagnosis and treatment of anaphylaxis. In particular, dose-limiting
gastrointestinal side effects have been observed with large doses of inhaled epinephrine [52].
Additionally, a review of patients with epinephrine toxicity defined a maximum tolerated
subcutaneous dose of 8 mg [53].

The ability to use a dose of epinephrine that was as low as possible, while still achieving
injection-like exposure, was a key part of neffy’s development strategy and may be an
important consideration for the evaluation of emerging epinephrine therapies [51].

2.3. Unit Dose Spray

neffy is delivered via a UDS that has been used for more than 20 years for the adminis-
tration of numerous other IN medications, including Narcan® (over the counter) (Adapt
Pharma, Inc., Radnor, PA, USA), Valtoco® (Neurelis, Inc., San Diego, CA, USA), Nayzilam®

(UCB, Inc., Smyrna, GA, USA), Tosymra® (Dr. Reddy’s Laboratories Limited, Princeton, NJ,
USA), Imitrex® (GlaxoSmithKline, Research Triangle Park, Durham, NC, USA), Zavzpret®

(Pfizer Inc., New York, NY, USA), and Opvee® (Opiant Pharmaceuticals Santa Monica,
CA, USA). The device is easy to use and highly reliable, with a failure rate of less than
1 in 100,000 uses across several million prescriptions (real-world failure rate of 0.3 per
1,000,000 devices for Narcan) [54,55]. The UDS is designed to deliver more than 80% of the
drug in droplets measuring between 20 and 120 µm, almost all of which are exclusively
captured on the nasal turbinates [56]. However, there could be issues in product use, such
as spraying before positioning the spray in the nose; therefore, instructions to use it need to
be referred to.

3. neffy Development Strategy

Ethical and practical limitations preclude the conduct of randomized controlled trials
to assess the efficacy of epinephrine products for the treatment of severe Type I allergic
reactions (including anaphylaxis), and to date, no such trials have been conducted [57,58].
There are several reasons for the lack of such studies. First, the unpredictable clinical course.
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When an allergic reaction occurs, it is difficult to impossible to predict the progression,
severity, and likelihood of fatality [59–61], which is the case even in the same patient from
one allergic reaction to another [62,63]. Such unpredictability of the clinical course could
put patients at risk of life-threatening, potentially fatal conditions [30,47,64–66]. Second,
given the high degree of variability in severe Type I allergic reactions (e.g., type of allergen
and clinical course) and the relative infrequency of anaphylaxis, a large study population
would be required to achieve sufficient statistical power [64,67]. Lastly, experience with
epinephrine use over 100 years has demonstrated its safety and efficacy in even severe
anaphylaxis using any route of administration.

In addition to the lack of efficacy trials, the pharmacokinetics of acute epinephrine
administration have not been well characterized, with previous work being based on IV
infusion. With the exception of one pharmacokinetic study conducted with Auvi-Q and
EpiPen [35], the current EAIs were approved without conducting any clinical trials. Recent
pharmacokinetic studies were conducted under the directive of the EMA in 2015 and
by ARS for the development of neffy and have demonstrated that there are significant
differences in pharmacokinetic profiles among approved injection products [36–38].

Therefore, over the course of 8 years, ARS worked closely with the FDA and the EMA
to create a development pathway to evaluate neffy’s safety and efficacy. This pathway has
included multiple clinical trials to evaluate the pharmacokinetic and pharmacodynamic
response of neffy in controlled settings under a variety of potential real-life conditions,
including self-administration, allergic rhinitis, and infectious rhinitis, as well as severe
hypotension in an animal model.

4. Review of neffy Data

This review includes published data from several clinical trials conducted as part of
neffy’s development program. All study protocols were approved by the relevant Insti-
tutional Review Boards or Ethics Committees and all participants gave written informed
consent before study participation. The studies were conducted according to the Interna-
tional Conference on Harmonization Guidelines for Good Clinical Practice.

Blood samples for pharmacokinetic analysis were collected before dosing and at 2,
4, 6, 8, 10, 12.5, 15, 20, 30, 45, 60, 90, 120, 150, 180, and 240 (360 and 480 min depending
on the study) minutes after dosing. Plasma epinephrine concentrations were determined
using a validated liquid chromatography–mass spectrometry method. Pharmacodynamic
parameters, including systolic blood pressure (SBP), diastolic blood pressure (DBP), and
pulse rate (PR), were measured using an automated BP measuring device. BP and PR were
measured at baseline; before dosing; and at 1 (depending on the study), 5, 10, 15, 20, 25, 30,
45, 60, 90, and 120 min after dosing.

4.1. neffy 1 mg Studies in Humans

neffy’s initial development began with a proposed 1 mg dose. An integrated analysis
was conducted using data from four randomized cross-over Phase 1 trials (n = 175) compar-
ing the pharmacokinetics and pharmacodynamics of manual IM epinephrine 0.3 mg with
needle and syringe (epinephrine 0.3 mg IM), epinephrine 0.3 mg autoinjectors (Symjepi
0.3 mg and EpiPen 0.3 mg), and neffy 1 mg. Two studies enrolled healthy individuals aged
19 to 55 years, and the other two studies enrolled healthy volunteers with a history of type
I allergies (allergic rhinitis, food allergy, venom allergy), aged 19 to 55 years [36].

In this integrated analysis, neffy 1.0 mg demonstrated a pharmacokinetic profile that
was comparable to what was observed following manual IM injection but less than what
was observed following EAIs. neffy’s pharmacodynamic profile was comparable to what
was observed following EAIs.

Pharmacokinetics

The epinephrine concentration vs. time curve showed the highest mean epinephrine
concentration after administration through EpiPen, followed by Symjepi, neffy, and epinephrine
0.3 mg IM (Figure 2).
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epinephrine 0.3 mg intramuscular (IM).

Pharmacodynamics

EpiPen, Symjepi, and neffy resulted in comparable increases in mean SBP vs. time,
whereas the change with epinephrine 0.3 mg IM was less pronounced (Figure 3). For
DBP, neffy was the only product that resulted in an increase in mean value over time. In
all injection products, there was a decrease in DBP, with the magnitude of decrease after
epinephrine injection being greater than that observed after placebo (Figure 3). The peak
mean PR vs. time was the greatest for EpiPen, followed by neffy, epinephrine 0.3 mg IM,
and Symjepi (Figure 3).
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In this analysis, neffy led to a modestly more robust increase for SBP, despite having
lower or comparable peak concentration relative to injection products. This greater effect
on SBP may be attributed to the difference in activating the β2 receptors that are abundant
in skeletal muscles, allowing them to be preferentially activated by direct IM injection
of epinephrine (through either manual injection or autoinjector administration). The β2
adrenergic receptors have the highest affinity and are activated at relatively low epinephrine
concentrations. They promote vasodilation in the skeletal muscle, causing a decrease in
peripheral vascular resistance and increased blood flow to skeletal muscle in the thigh,
ultimately resulting in a decrease in DBP, which may drive an attenuation of the increase
in SBP.

4.2. neffy 2 mg Studies in Human
4.2.1. Studies in Healthy Subjects
Crossover Study Comparing neffy 2.0 mg vs. EpiPen and Manual IM Injection—Dosing
Once and Twice

This was a Phase 1 crossover study with healthy subjects conducted to evaluate the
pharmacokinetics and pharmacodynamics of neffy 2.0 mg compared with EpiPen 0.3 mg
and manual IM epinephrine 0.3 mg with needle and syringe (epinephrine 0.3 mg IM). The
objective of this study was to demonstrate that the pharmacokinetic and pharmacodynamic
profiles of neffy were within the range of approved epinephrine injection products. A
total of 59 subjects aged 21 to 54 years old received a single dose of neffy, EpiPen, and
epinephrine 0.3 mg IM, and a repeat dose of neffy and EpiPen were analyzed [68].

This study demonstrated that neffy 2 mg has a pharmacokinetic profile within the
range of currently approved epinephrine injection products and a pharmacodynamic profile
that was comparable to or better than injection products.

Pharmacokinetics

Mean epinephrine concentrations were highest following a single EpiPen dose, which
persisted until approximately 20 min after dosing (Figure 4). From 30 to 360 min after dos-
ing, greater mean epinephrine concentrations were observed following neffy relative to both
EpiPen and epinephrine IM. Following repeated doses, greater mean epinephrine concen-
trations were observed with both neffy treatments (R/R and L/R) compared with EpiPen.
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dose administered at 10 min.

Pharmacodynamics

neffy’s pharmacodynamic response on SBP was observed starting at one minute after
administration and persisted for 120 min (Figure 5). EpiPen was associated with a less
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pronounced and more abrupt increase in SBP relative to neffy; a nominal change in SBP
was observed following epinephrine IM. For all treatments, SBP returned to baseline ap-
proximately 120 min after dosing. For DBP, all treatments resulted in an immediate increase
from baseline, followed by a decrease (Figure 5). The decrease was more pronounced
following EpiPen and Epinephrine IM compared with neffy, which was consistent with
what was observed in the integrated analysis in Section 4.1. All treatments resulted in
an increase from baseline PR (Figure 5). The initial increase was followed by a decrease
for both epinephrine IM and EpiPen, whereas the elevation persisted throughout 120 min
following neffy.
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Crossover Study Comparing neffy 2.0 mg (Self-Administration) vs. Manual IM Injection
(via Healthcare Provider)

This was a Phase 1 crossover study in adults with Type I allergies conducted to evaluate
the pharmacokinetics and pharmacodynamics of self-administered neffy 2 mg compared
with health care provider (HCP)-administered manual IM epinephrine 0.3 mg with needle
and syringe [69]. Given that neffy is intended for use both in and outside of hospital
settings, it was necessary to illustrate neffy’s pharmacokinetics and pharmacodynamics
following self-administration. A total of 45 patients aged 23 to 53 years old with a history
of type I allergy were enrolled [69].
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Following self-administration, neffy 2.0 mg resulted in pharmacokinetic and pharma-
codynamic profiles that were comparable to, or better than, HCP-administered epinephrine
0.3 mg IM, including a more pronounced increase in SBP following neffy. These data were
consistent with other studies presented in this review and demonstrated that, following
self-administration, neffy’s pharmacokinetic and pharmacodynamic profiles are within the
range of injection products.

Pharmacokinetics

Overall, when self-administered, neffy resulted in higher epinephrine exposures rela-
tive to HCP-administered epinephrine 0.3 mg IM (Figure 6).
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Pharmacodynamics

Compared with HCP-administered IM 0.3 mg, self-administered neffy resulted in a
greater mean increase from baseline SBP, DBP, and PR, and the pharmacodynamic response
was observed as soon as one minute after administration (Figure 7).

4.2.2. Studies on Patients with Different Conditions
Crossover Study Comparing neffy 2.0 mg under Normal Nasal Conditions and during
Infectious Rhinitis

This was a Phase 1 study in subjects during and after upper respiratory tract infections
(URTIs). Given the high prevalence of URTIs, this study was conducted to characterize
neffy’s pharmacokinetics and pharmacodynamics during active URTI conditions. The phar-
macokinetics and pharmacodynamics of neffy 2 mg were assessed during an active URTI
and again upon recovery (normal nasal conditions) [70]. Subjects were enrolled during
symptoms of URTIs with positive nasal congestion and edema (Total Nasal Symptom Score
[TNSS] of ≥5 out of 12 and a congestion score of ≥2 out of 3). A single dose of neffy 2.0 mg
was administered during the URTI, followed by pharmacokinetic and pharmacodynamic
assessments. Subjects returned after recovery from URTI to receive a second dose under
normal nasal conditions (TNSS score of ≤2 out of 12 and a congestion score of ≤1 out of 3),
followed by repeated pharmacokinetic and pharmacodynamic assessments. Subjects who
used oral and/or nasal decongestants within 24 h before dosing were not enrolled. A total
of 21 patients aged 19 to 55 years old were enrolled.
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Pharmacokinetics

The study demonstrated that URTIs had minimal impact on the absorption of or
maximum exposure to epinephrine or following administration of neffy 2.0 mg (Figure 8).
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Pharmacodynamics

The mean change from baseline SPB and PR values was similar between URTIs and
normal conditions, and a pharmacodynamic response was observed as soon as one minute
after administration (Figure 9).
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Effect of Allergic Rhinitis

Based on feedback from the FDA, ARS conducted an additional study to assess the
impact of Nasal Allergy Challenge (NAC)-induced allergic rhinitis on the comparative
bioavailability of neffy 2 mg versus manual IM epinephrine 0.3 mg IM with needle and
syringe (epinephrine 0.3 mg IM) under normal nasal conditions.

This was a Phase 1 study in subjects with a history of allergic rhinitis. The NAC was
conducted at screening, with eligibility limited to subjects who had a TNSS of ≥5 out of 12
and a congestion score of ≥2 out of 3. A total of 36 subjects aged from 20 to 52 years old
were enrolled.

Administration of a single dose of neffy following NAC-induced allergic rhinitis
resulted in an increase in the rate of epinephrine absorption. It is assumed that this
increased absorption is due to the increased permeability in the nasal mucosa, as this
phenomenon was observed in the anaphylaxis dog model and has been reported in the
literature [49,50]. At the same time, neffy 2 mg with rhinitis also resulted in more rapid
clearance compared with normal nasal conditions (Figure 10).
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Figure 10. Mean epinephrine concentration time. Study conducted on patients with a history of
seasonal allergic rhinitis. N = 34 for neffy 2.0 mg with rhinitis. N = 35 for epinephrine 0.3 mg IM.
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While these data demonstrated that there appears to be sufficient epinephrine exposure
with neffy (i.e., greater than 0.3 mg IM epinephrine injection) at the critical early time points,
including the first 5 to 15 min when reversal of the initial symptoms of allergic reactions
is typically observed with a single dose, an additional clinical study was developed in
conjunction with the FDA to assess neffy’s pharmacokinetics following dosing twice during
these same NAC-induced allergic rhinitis conditions. The results of this study were being
reviewed by the FDA at the time this report was produced.
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4.2.3. Anaphylaxis Dog Study

The EMA requested data on neffy’s absorption during severe hypotension. Because it
is not possible to induce severe hypotension in human subjects, a Good Laboratory Practice
(GLP) study was conducted in anesthetized beagle dogs. The objective of this GLP study
was to evaluate neffy’s pharmacokinetics in the dogs under both normal and Tween 80-
induced anaphylaxis conditions [71]. A total of 14 dogs (10 males and 4 females) were dosed
with neffy 1.0 mg under normal conditions, followed by neffy 1.0 mg under anaphylaxis con-
ditions with severe hypotension [49]. The mean (±SD) baseline SBP/DBP was 113 (±47)/62
(±27) mm Hg before anesthesia induction, with a decrease to 94 ± 16/55 ± 13 mm Hg fol-
lowing general anesthesia. For the anaphylaxis session, the mean (±SD) SBP/DBP was
137 (±50.4)/78 (±30) mm Hg before anesthesia induction (and Tween 80 administration),
with a decrease to 61 (±10)/39 (±7) mm Hg following anesthesia induction and Tween 80
administration. The more pronounced decrease seen during anaphylaxis represents the
combined effect of anesthesia and anaphylaxis.

The results of this study demonstrated that the absorption of epinephrine was not
suppressed even during anaphylaxis with severe hypotension and was, in fact, increased.
This may be because vasoactive mediators such as histamine released during anaphylaxis
increase vascular permeability [72,73]. Increased epinephrine absorption has also been
reported under histamine-induced nasal congestion in dogs [50]. These data suggest that IN
absorption of epinephrine may be enhanced during the increased permeability associated
with a more severe anaphylaxis event.

Anaphylaxis induction resulted in a marked increase in epinephrine concentrations,
which were pronounced at early time points (Figure 11).
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5. Conclusions

The low utilization rates of current EAIs represent a significant unmet medical need
among patients at risk for severe allergic reactions, including anaphylaxis. Prompt treat-
ment with epinephrine at the first symptom/sign is critical to stop disease progression. This
is even more important when the clinical course is unpredictable and can initially present as
mild. Failed or delayed treatment is associated with an increased risk of severe anaphylaxis,
biphasic reactions, hospitalization, and death. The limitations of the currently approved
EAIs are generally attributable to needle-phobia, the bulkiness of carrying an EAI, and
patients’ own safety concerns, which speak to the need for additional treatment options.

Nasal administration of epinephrine may be an attractive option, providing patients
and caregivers with a needle-free, pain-free delivery option that results in rapid absorption
and resolution of symptoms. neffy’s development is the result of more than 8 years of close
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collaboration with the FDA and rests upon the proven triad of epinephrine, Intravail, and a
UDS to ensure a safe and effective product.

Across a range of studies, neffy has demonstrated a pharmacokinetic profile that is
within the range of currently approved injection products, as well as pharmacodynamic
responses that are as good or better than injection, including a response observed as early
as one minute after treatment, which confirms activation of α- and β-adrenergic receptors
that underlie epinephrine’s MOA for the treatment of allergic reactions. Importantly, these
findings were reproduced under a variety of nasal conditions, including moderate to severe
congestion and/or rhinorrhea due to allergic rhinitis and infectious rhinitis. The results
of the GLP dog study demonstrate that epinephrine administered via neffy is effectively
absorbed despite severe hypotension caused by anaphylaxis.

neffy’s safety and efficacy are anticipated to be comparable to current injection products
while providing patients and caregivers with a treatment option that results in immedi-
ate receptor activation and removes the most significant barriers to use. By reducing a
patient’s hesitation to treat themselves with epinephrine, neffy should increase earlier use
of epinephrine and thereby reduce the risk of progression to severe anaphylaxis.
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